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A review is presented of methods for solving the radiation transport equation in terms of 
the symmetric and antisymmetric averages first introduced by Feautrier (CR. Acad. Sci. 
Paris 258 (1964), 3189). These methods have enjoyed good success and have achieved 
considerable propularity in astrophysics. Both formulation and algorithms are discussed 
briefly, and basic references are provided in order to provide easy access to workers in other 
fields where these methods may prove applicable. 0 1985 Academic Press, Inc. 

I. INTRODUCTION 

Radiation transport is of immense importance in astrophysics, because it not only 
plays a fundamental role in determining the structure and dynamics of astrophysical 
media, but also determines the emergent spectra which the astronomer must analyze 
in order to diagnose the physical state of objects he observes. It is therefore not 
surprising that astrophysicists have devoted a great deal of effort to solving the 
radiation transport problem. A diverse assortment of methods has been developed, 
and there is not unanimity of opinion as to which is best. Nevertheless one particular 
class of methods, based on Feautrier’s idea [ 13-151 of using symmetric and antisym- 
metric averages of the radiation field along a ray, has gained prominence and 
popularity in astrophysics because it has led to a number of efficient, accurate, and 
robust algorithms. The purpose of this article is to provide workers in other areas of 
computational physics a concise introduction to this approach and to the literature it 
has spawned. We deal here only with static media; dynamical media and problems of 
line formation in moving media will be discussed in later articles. 

Methods using Feautrier variables treat the transfer equation as a dl@Terential 
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equation (often in second-order form) subject to 2-point boundary conditions. An 
advantage of such an approach, as opposed to integral-equation formulations, is that 
it is very easy to incorporate new physics into the problem, e.g., complex scattering 
processes with partial redistribution in angle and frequency, velocity fields, relativistic 
effects, etc. Moreover these methods are naturally posed for dynamical problems and 
are easily adapted to radiation hydrodynamics codes. Of course they have disad- 
vantages too. Thus the 2-point boundary-value nature of the technique implies it is 
“implicit” in space, requiring a recursive forward-backward sweep of the mesh. This 
requirement imposes little if any penalty in l-dimensional problems, but makes the 
approach quite costly in two dimensions [9, 10, 361. We therefore shall discuss only 
l-dimensional media. Furthermore as the discretization scheme generally presupposes 
the radiation field is representable as a second-order polynomial on successive triads 
of mesh points, it is ill-suited to problems in which the photon mean free path varies 
radically from cell to cell, e.g., at material interfaces. It usually suffices to assume l- 
material media in astrophysical problems, but even then special techniques must be 
employed at unresolved shocks or ionization fronts 133, 501. For simplicity we shall 
henceforth assume all structures are resolved on the computational mesh; for 
problems with unavoidable unresolved interfaces only integral-equation formulations 
are generally rugged enough to survive, and the reader is advised to turn elsewhere. 

In this article we focus on the mathematical structure, and on methodological and 
computational aspects of the problem; physical background can be found in [ 3 1, 40, 
451. Further, we shall discuss only direct solutions of the equations as these are easily 
vectorizable and are usually competitive in l-dimensional problems. But we must 
note that for certain problems iterative solutions are indispensible, and although little 
experience has accumulated yet, a number of ingenious approaches are now being 
explored; these hold promise for the future. 

II. PLANAR GEOMETRY 

Consider first planar geometry. In astrophysics the paradigm is a stratified semi- 
infinite stellar atmosphere or a finite slab representing, say, a nebula. 

A. Second-Order Form of the Transfer Equation 

(i) Derivation. Let z measure distance in a direction k perpendicular to the 
planar layers and let ,U = n . k be the angle cosine of the direction of photon 
propagation II. Then for radiation moving in two antiparallel pencils around f~ we 
have the two transfer equations 

*rW,,Pz) = X”(S” - I,“). (2-l) 

In Eq. (2. l), xv is the total extinction coefficient or opacity (sum of “true absorption” 
plus “scattering”) and S, is the total source function, which contains both thermal 
emission and scattering terms. 
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Define a mean-intensity-like variable by the symmetric average 

j”” f f [1(+/l, v) + q--A VII, (O<Pu( 1) (2.2) 

and a flux-like variable by the antisymmetric average 

Then adding the two equations (2.1) for f y we obtain 

P(ah,“/w = X”(j,” - S”h (2.4) 

and subtracting them we have 

Notice that these angle-dependent equations have a direct correspondence with the 
moment equations (2.34)-(2.36), and thus provide a natural framework for treating 
the interaction between matter and radiation in a physically satisfying way. Unlike 
the moment equations, these equations “close,” that is, they contain only j,” and h,, 
(because these two variables together manifestly specify I,,” completely). 

Using Eq. (2.5) to eliminate h,, from Eq. (2.4) we obtain the second-order form 

P2 a 1 aj,” -- 
( 1 

= 
X” az X” f3z 

*au=. -s p at; Jr” “’ (O<P < 119 

where the optical depth r,, measured inward, is defined as 

dz, = -x, dz. (2.7) 

Note that in writing Eq. (2.5) we have tacitly assumed that x, and S, are isotropic, or 
at least are even functions of p (e.g., the dipole phase function of Thomson or 
Rayleigh scattering). When this is not the case [43], an additional source term 
appears in Eq. (2.5) and we cannot combine Eqs. (2.4) and (2.5) into the second- 
order form of Eq. (2.6). We must then solve the coupled first-order equations using 
an algorithm similar to that described in Section 1II.B. 

(ii) Boundary conditions. Equation (2.6) must be supplemented by boundary 
conditions at r, = 0 and r, = rmax ; these are of the general form c, + c2 j,” + 
c,(8j,,/&,) = 0. For example, suppose an incoming intensity Z,; is imposed at r, = 0 
and an outgoing intensity Z:” at r, = r,,,. Then using the identity 

we have 
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and 

Pu(%“P&,, = 1,’ -.ip”(%l,d. (2. IO) 

Alternatively, deep within a semi-infinite medium we can impose the equilibrium 
diffusion approximation and take 

~w(?llax) = B”(%l,J + Pml~~“Lmax’ (2.11) 

whence we have jJt,,,) = B, and h,,(r,,,) =~(~BJc%,),~,,. We can then write a 
boundary condition 

If the medium is static and in a steady state then it is in radiative equilibrium, hence 
we can specify a constant imposed radiation flux at the lower boundary. Exploiting 
the diffusion approximation we obtain 

so that we can rewrite Eq. (2.12) as 

where xR is the usual Rosseland mean opacity and B = &/n. 

(iii) Discretization. Equations (2.6), (2.9), and a choice of (2.10), (2.12), or 
(2.14) specify the radiation field completely (for a given run of material properties in 
the medium). To solve them we discretize all variables, choosing a mesh of angle- 
points {p,} (m = l,..., M) and frequency-points (v,} (n = l,..., N) spanning the ranges 
0 < ,u < 1 and 0 < v < co. The medium is divided into discrete cells. The variables j,, 
may be located either at the cell surface (zd} (d = l,..., D) or at the center of a set of 
mass cells {Am,, ,,* } (d= l,..., 0). The former choice has usually been adopted in 
static or steady-flow stellar atmospheres and quasi-static stellar evolution work. The 

md-l md md*l 

FIG. 1. Variables located at cell centers (0): p, T, p, e, j,,, E,, P,; variables located at cell boun- 
daries (x): z (or r), u, h,,, F,. 
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latter is more natural for dynamical applications on a Lagrangean or adaptive mesh 
using a staggered-mesh scheme such as sketched in Fig. 1; to be consistent with later 
topics of discussion we adopt this scheme here. 

Variables located at cell centers are given half-integral indices, e.g., j,, 1,2,mn = 
Amd+112db9 n , v )* those at cell surfaces are given integral indices, e.g., hdmn. 
Derivatives are replaced with finite differences and angle-frequency integrals in the 
source terms (see Sect. IIC) are replaced with quadrature sums, e.g., 

and 

(2.15) 

(2.16) 

where the Q’S and b’s are appropriate quadrature weights. It is convenient to 
concatenate all combinations of angles and frequencies into a single set with index 
k = l,..., K (e.g., (Us, vk) = (u,,, , v,J with k = m + (n - 1)M). 

We thus replace Eq. (2.6) with a difference representation such as 

4 1 . 1 . 
AZ,, ,/Z,k Aq,+ ,,k Jd+3/2pk - jd+ lj2gk + AT,, Jd-1/2,k I 

=Jd+1/2,k -S d+ 1/2,k, (k = l,..., K), (d = 2,..., D - 1). (2.17) 

Here 

Asdk= $tmd-1/2,k Amd-1/2 + Od+ 1/2,kAmd+ 1/2) (2.18) 

and 

AT,, 112.k = &ki, + A%+ I,kh (2.19) 

where w, z x,/p. The source function has the general form 

S d+ 112.k = ud+ 1/2,k Wk’jd+l12,kr + pd+ 1&k’ (2.20) 
k’=l 

Equation (2.17) is second-order accurate. Auer [4] has developed a fourth-order 
accurate Hermite representation of Eq. (2.6), and some authors [24,38] have used 
spline colocation techniques; in both cases the system retains a tridiagonal structure 
as in Eq. (2.17) and the algorithms described below are unaffected. 

When j,,” is chosen to lie on cell surfaces, second-order accurate discrete boundary 
conditions are easily derived by Taylor series expansion [2], and with Hermite 
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formulae one obtains third-order accuracy [4]. For a staggered mesh one proceeds as 
follows: At the upper boundary Eq. (2.4) gives 

h,k = Pk(jWk -.hkP~*k (2.21) 

and Eq. (2.4) gives 

hzk = hlk + (A~3,2k/~k)(.i3,2k - S3,2k)y (2.22) 

where AZ,,,, = u3,2k Am,,, . Applying Eq. (2.9) from the surface of the uppermost cell 
to its center we have 

(2.23) 

whence we find 

hlk = (hk -I-Y@ + f 4,2,/P,). 

Combining Eqs. (2.21), (2.22), and (2.24) we obtain the desired boundary condition 

Pkhk -j3,2k)/A~2k = K.hk -1-N + + 4,~~/~dl 
+ @~3dW3~2k - SW). (2.25) 

At the lower boundary one discretizes Eq. (2.10), (2.12), or (2.14); in particular, 
Eq. (2.14) implies 

Equation (2.26) is only of first-order accuracy, but that is usually sufficient in the 
equilibrium diffusion regime. 

(iv) Remarks. Equations (2.17), (2.25), and (2.26) comprise a block 
tridiagonal system of order DK for the unknowns Jd+,,2,k. To solve them we must 
clearly perform a forward-backward recursive sweep to match the 2-point boundary 
conditions. Thus, as mentioned in Section I, the equations are “implicit” in space, 
which is unfavorable in multidimensional problems. On the other hand, the 
symmetric and antisymmetric averages j,, and h,, naturally and automatically locate 
radiation tensors of even rank at cell centers and tensors of odd rank at cell boun- 
daries, just where these quantities are needed. More important, because the 
cancellation between 1(+~) and I(-,u) is done analytically in h,, and h,, is retained 
as a variable (more precisely, is recoverable at will from Eq. (2.5)), one can compute 
accurate radiation fluxes without suffering the severe numerical cancellation at large 
optical depths that results if he were to calculate Z(+,U) and I(-,u) separately and 
then subtract. In addition, the Feautrier system is automatically consistent with 
second-order diffusion (see Sects. 83, 97 of [40]). Both of these features are obviously 
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of prime importance in obtaining accurate energy balance in the radiating fluid and 
give Feautrier methods significant physical advantages over many other methods. 

B. The Formal Solution 

The difficulty of solving the transfer equation depends on what is assumed to be 
known about the source function S, and its coupling to the radiation field and/or 
material properties. The simplest problem of all is a formal solution, in which we are 
to calculate the radiation field at all depths, angles, and frequencies when the source 
function is given. A formal solution is required in order to know the radiation field 
emergent from the medium; it is also almost always needed in iterative procedures 
used to solve more complex problems. 

Represent the depth variation of j(&, v,J by the column vector 

j,z(j . . 3/2k¶J5/zk,“.,J~+l/2,k ) (2.27) 

and the (known) depth variation of S(V,) by Sk. Then the transfer equation and 
boundary conditions are of the form 

Tkjk = Sk, (2.28) 

where T, is a (D X 0) tridiagonal matrix. The system is solved by the standard 
tridiagonal Gaussian elimination scheme. The computational work scales as 
cDK = cDMN, which is irreducible because we seek DK values of j,,“. On vector 
machines one can vectorize the recursive depth elimination over angle frequency and 
solve K systems in parallel with a corresponding large increase in speed [20]. 

C. Scattering Problems 

More generally, we must face up to the integrodifferential nature of the system 
implied by source terms of the general form of Eq. (2.20). The bandwidth of the 
integrals in the angle-frequency domain is detrmined by the physical processes 
described by the scattering kernel (see Chaps. 2, 7, 12, and 13 of [3 1 I). For example: 
(a) For isotropic or angle-dependent coherent scattering all angles are coupled at 
each frequency separately. (b) For line-formation problems with complete, or angle- 
averaged partial frequency redistribution the source function contains only angular 
moments of the radiation tield. Thus angles are eliminated but all frequencies within 
the line are coupled. (c) More generally, in multilevel statistical equilibrium 
calculations all frequencies within the transition array are coupled. (d) Yet more 
generally, for line-formation problems with angle-dependent partial redistribution in 
static media, or even complete redistribution in moving media, all angles and 
frequencies are coupled explicitly and inextricably, and a meaningful splitting of these 
two dimensions is no longer possible. The same remark holds a fortiori for radiation 
transport in relativistic flows where the coupling among the components of the 
photon 4-momentum in the tangent spaces attached to world lines is essentially 
complete [32,42]. Similar couplings occur in other physical arenas, e.g., neutron 
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transport, and is often treated successfully by iterative schemes. For a variety of 
reasons (see, e.g., Chaps. 6 and 11 of [3 11) such schemes generally fail in radiation 
transport applications, and hard experience has shown that it is best, and usually 
necessary, to treat essential couplings directly; that is the route taken here. 

(i) The Feautrier algorithm. In the Feautrier algorithm [ 131 one defines 
vectors 

jd+ l/l = (jd+ 1/2,1y jdt 1/2,2 pmas3 .id+ l/2,?& (d = l,..., D), (2.29) 

containing the angle-frequency (either or both) dependence of the radiation field 
deemed necessary to describe S at a single depthpoint. The discretized transport 
equation is then of the form 

-A d+ 1/2jd- l/2 + Bd+l12jd+ l/2 - ‘d+ llljdt 3/2 = Ld+ 1/2? (2.30) 

where A, B, and C are (K x K) matrices and L is a vector of length K containing the 
thermal source terms from Eq. (2.20). If the second-order scheme of Eq. (2.17) is 
used, B is full but A and C are diagonal. If Hermite or spline colocation formulae are 
used, A and C become full as well; the reduction in number of depthpoints afforded 
by these higher-order schemes may therefore be more than offset by the increased 
computation required in Eqs. (2.31)-(2.33). The upper and lower boundary . . . conditions Imply A,,, = 0 and CD+1,2 = 0. The system is solved by computing 

D 6+1/Z = tBd+l,2 - Ad+l,2Dd-l,2)-1Cd+l,2 (2.3 1) 

and 

“dt l/2 = &t l/z - Ad+1,ZDd-1,2)-1 cLd+1,2 f Ad+ 1,z”d-& (2.32) 

for d= 1 ,,.., D. The LU decomposition of (B - AD) is vectorizeable [21] as is the 
generation of the multiple right-hand sides in Eqs. (2.31) and (2.32) [22]. When C is 
sparse, it may be faster on scalar machines to actually compute the inverse 
(B - AD)-’ and then take advantage of the structure of C in computing D. Because 
C D + 1/2 = 0, DD+ 1/2 = 0, hence jD + 1j2 = “D + l/2. The radiation field is then constructed 
by the back-substitution 

jd+ 1/2 = D dtl/2jd+3/2 + “dtl/Z9 (d = D - l,..., 1). (2.33) 

The total computational effort scales as cDK3 = cDM3N3. Notice that the Feautrier 
algorithm is cheap for coherent scattering (N = 1) but rapidly becomes costly as the 
frequency bandwidth of the source term increases. 

(ii) Moment equations and variable Eddington factors. The unfavorable scaling 
of the computing effort in the basic Feautrier method as K3 cc M3N3 shows that it is 
imperative to eliminate any inessential information contained in the solution vector. 
In particular, unless the angular coupling in S, is absolutely indispensible (as in case 
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(d) discussed at the beginning of Sect. ILC], we should replace Eqs. (2.6), (2.9), and 
say, (2.14) by the angle-integrated moment equations 

a2u; J,)/az; = J, - S,, (2.34) 

k7.m~wo = ~,m (2.35) 

and 

~a(fww~,iz,,, = H[(X,lX,)(a~,laT)l(d~dB/dT)lTrnax, (2.36) 

where J, = 1; j,,,, 4 is the mean intensity, H, = si h,,,u & is the (Eddington) flux, 
and H s I,, H, dv = constant. 

In Eqs. (2.34)-(2.36), f, denotes the variable Eddington factor [ 161 

(2.37) 

here E, and P, are the monochromatic radiation energy density and pressure. This 
factor provides closure of the system of moments. Iff, and the additional form factor 
g, = H,WJ,(O) are regarded as known, then discretized versions of Eqs. 
(2.34~(2.36) are of the same form as Eq. (2.30) and can be solved by the same 
algorithm. 

We thus proceed by iteration [6]: (1) Given f,,‘s and g, (good initial guesses are 
f, = 4 and g, E f , obtained by assuming jiuv is isotropic and I- = 0), we solve the 
frequency-coupled moment equations (2.34)-(2.36). In doing so we obtain correct 
global thermalization of J, (see Chaps. 6 and 11 of [3 1 I). (2) Using the resulting Ju’s 
we can evaluate S,, and then perform a formal solution to construct the full angle- 
frequency dependent distribution function jPu . We can then update the Eddington 
factors from 

(2.38) 

Likewise we can use Eq. (2.23) to evaluate jr,,,” and hl,,, hence the surface factors 
f,, and g,. With new Eddington factors we return to step (1) and iterate to con- 
vergence. 

For I iterations the computational effort scales as I(cDMN + c’DN3) Q c”DM3N3 
even for modest M provided I is not large. Extensive experience has shown this 
procedure to be strongly convergent; typically only 3 or 4 iterations are required to 
determine the f,‘s with good accuracy [6], hence large savings are realized even for 
M= 3 or 4. The reason this splitting works so well is that the radiation field is, in 
fact, essentially isotropic for r, > 1, hence the iteration is needed only in an optically 
thin boundary layer. 

(ii) The Rybicki algorithm. In certain problems the frequency coupling in the 
source function is all contained in a single quantity which is not itself explicitly 
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frequency dependent. For example, in line-formation problems with complete 
redistribution the scattering term contains only I= j #,J, dv, where $, is the line 
profile (see Chap. 11 of [3 11); a similar situation arises if we demand energy balance 
(see Sect. 1I.D). In such cases the frequency information retained by the Feautrier 
algorithm is redundant and, as shown by Rybicki [46], a much more efficient 
algorithm results from interchanging the inner and outer structure of the system. 

Thus assume the source function has the form S, = a,l+ j?,, where 7 is some 
integral over J, (or double integral over j,J. Let 

j, t&,3/29 A,2 7.. 3 JD+,,*) (2.39) 

represent the run of 7 with depth. Then for each angle-frequency point the transfer 
equation (2.17) plus boundary conditions has the form 

Tkjk + U,J= K,, (k = l,..., K), (2.40) 

where T, is a (D x D) tridiagonal matrix representing the differential operator, U, is 
a diagonal or tridiagonal (D x D) matrix (for second-order or Hermite schemes, 
respectively) containing the depth variation of the coupling coefficient ad+ ,,Z,k of the 
scattering term, and K, is a vector containing the depth variation of the thermal 
source term /Id+ ,,2,k. In addition there are D equations defining j, namely 

Jd+1/2= ‘f wd+ l/Z,kJd+ l/Z,k, (d = l,..., D), 
k=l 

(2.41) 

where the weights account for profile functions. Equations (2.41) are equivalent to 

3= 5 V,j,, 
k=l 

(2.42) 

where the Vk’s are diagonal. For each k we solve Eq. (2.40) to find A, and B, in 

jk=Ak-Bkj=T;‘Kk- (T;‘U,$i. (2.43) 

Substituting Eq. (2.43) into Eq. (2.42) for all k we develop the final system Cj= D, 
where C is full. Solving this system we obtain j, hence the run of S with depth. The 
radiation field can then be recovered by a formal solution (which is cheaper than 
evaluating Eq. (2.43)). 

The calculation of each B, requires O(D2) operations, as does the summation of 
V,B, into C. Hence the total computing effort scales as cD2K + c’D3 = 
cD’iUK + c’D3; in practice the first term usually dominates. Therefore the Rybicki 
scheme has an enormous advantage over the Feautrier scheme in problems with large 
numbers of angles and/or frequencies. On the other hand Feautrier’s scheme can 
handle the most general case of partial redistribution (whereas Rybicki’s method 
cannot), and is better suited to problems in which the radiative transfer is coupled to 
a large number of additional constraint equations, as we now show. 



COMPUTATION OF RADIATION TRANSPORT 11 

D. The Model Atmosphere Problem 
(i) Momentum and energy balance. Pedagogical cases aside, radiation 

transport problems rarely arise in isolation, but in reality are coupled to other 
physical constraints such as momentum and energy balance. A good example is 
provided by the model atmosphere problem in which a static, stratified, semi-infinite 
medium radiates into vacuum. Because the medium is static, it is in radiative and 
hydrostatic equilibrium, hence 

5 O” (4~51, - c,y,E,) dv = 4n irn x,(S, -J,) dv = 0 
0 0 

(2.44) 

and 

&(p+P)=g (2.45a) 

or 

(dp/dm) = g - (471/c) Jow w, H, dv. (2.45b) 

Here p = NkT is the gas pressure (N is the total particle density); P is the total 
radiation pressure 

p= * 
1 

P,dv= 
0 

,fo* f,E, dv = (4x1~) lorn fu J, dv; (2.46) 

m is the column-mass measured inward 

dm = -p dz; (2.47) 

g is the (constant) surface gravity; and rl, is the emissivity of the material, including 
both thermal and scattering terms. In discrete form we have 

and 

(d = l,..., D), (2.48) 

W%+ 1,2 Td+ 1l2 - Nd- 1,2 Td- 1d + (4nlc) 5 andfd+ 1,2,n Jd+ 1,2,n -.fi 1,2,n Jd- 1,2,.) tt=l 
= gAm,, (d = l,..., D), (2.49) 
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where Am,, s f(Am,- 1,2 + Am,, 1,2 ). We obtain a boundary condition for d = 1 from 
Eq. (2.45b) by assuming the medium (if any) above m, is transparent so that H, is 
constant; then 

N3,2kT3,2 = m 1 g - (4x/c) 5 an%,2nhn Jjlzn 3 (2.50) 
n=1 

where h, is a form factor, obtained from a formal solution, relating H,(O) to J, at 
d=j. 

Equations (2.44) and (2.45) are to be solved simultaneously with the transport 
equations, e.g., Eqs. (2.34)-(2.36). To complete the system we impose conditions of 
particle and charge conservation, and specify an algorithm for determining individual 
bound and free state occupation numbers as a function of N, T, and (in general) the 
radiation field. We then have a highly nonlinear system which must be solved 
iteratively. 

(ii) LTE atmospheres by Feautrier algorithm. Suppose first that the material is 
in local thermodynamic equilibrium (LTE). One then assumes that material 
occupation numbers are determined solely by the equations of equilibrium statistical 
mechanics given local values of T and N. The radiation field, in contrast, is allowed 
to depart from its equilibrium destribution function B,(T) and to respond to spatial 
gradients and boundary effects. Explicit coupling of level populations to the radiation 
field is simply ignored, so this approximation can be expected to be correct only in 
the limit of high densities when collisional rates vastly exceed radiative rates 149; 31, 
Chap. 51. 

Given the assumption of LTE, our problem is to determine the solution vectors 

Wdt 1/z = (Jd+ 1/2,1 T..*Y Jd, 1/2,N7 Td+ 1129 Nd+ I/Z), (d = l,..., II), (2.5 1) 

from N discretized radiation moment equations (2.34~(2.36) and the constraint 
equations (2.48)-(2.50), which collectively are of the form 

fd+ l/2 ( w) = fd+ 1,2(Wd- l/2, wd+ 1123 Wd+ 3/Z )= 0. (2.52) 

To solve nonlinear system (2.52) we use the generalized Newton-Raphson technique 
(sometimes called “complete linearization” in astrophysics), so that given a trial 
solution w” we calculate the correction 6~ that satisfies 

(2.53) 

where j runs over all variables. Essentially all of the derivatives in Eq. (2.53) can be 
worked out analytically [5,35]. The resulting system is block tridiagonal, 

-A d+ 1,2hd-I,2 + Bd+ l,Zswd+ l/2 - ‘d+ 1,28Wd+3/2 = Ed+ l/29 (2.54) 
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and can be solved by the Feautrier algorithm. After each Newton-Raphson 
correction the variable Eddington factors needed in Eqs. (2.34)-(2.36) are updated in 
a formal solution using the revised model. A consequence of this procedure is loss of 
quadratic convergence, a sacrifice that must be made because direct inclusion of 
angle-dependent information escalates the computational effort prohibitively. In any 
event the critical bottleneck is to remain within the domain of convergence of the 
linearization procedure; details and special techniques are discussed in [35]. 

The computational effort of this approach scales as cD(N + 2)3, which is 
unfavorable because for physical reasons one often desires to use a large number of 
frequencies (e.g., to treat spectral line blanketing). Two approaches can be suggested 
to reduce the computational burden: (1) One can suppress the frequency dimension 
by integrating the transfer equation over frequency, introducing frequency-averaged 
mean opacities [ 12,281. Four means are required: the usual Planck and Rosseland 
means xp and xR, and energy- and flux-weighted means, 

XE = 
5 

x,E, WE (2.55a) 
0 

and 

xF = 
1 

x,F, dvjF. 
0 

(2.55b) 

The same means enter the radiative and hydrostatic equilibrium constraints. The 
computational strategy is to solve the frequency-integrated moment equations, 
regarding the spectral profile functions E,/E and F,/F as given (much in the same 
spirit as variable Eddington factors), and approach strongly reminiscent of the 
muftifrequencylgrey technique of the VERA code [ 161. In order to linearize the 
equations one may write xE = k,xe(N, T) and xF = k,xR(N, T), and keep the factors 
k, and k, at each depth fixed under linearization. The result is a block tridiagonal 
system with only three depth-dependent variables-N, T, and .7 (or E)-which is 
cheap to solve. Each linearization step is followed by a full formal solution to provide 
updated variable Eddington factors and spectral profiles. Of course because less of 
the coupling is handled directly, this method converges more slowly than Eqs. (2.53) 
and (2.54); the cheapness of each iteration may offset their greater number, and often 
solutions can be obtained very economically. However, in extremely nongrey media 
with enormous opacity variations the method may simply fail; we must then revert to 
a calculation that handles the frequency coupling explicitly. (2) Alternatively one can 
apply formal splittings to the matrices in Eq. (2.54), and solve the frequency- 
dependent system by astute iterative techniques instead of by brute force. A good 
example of such a procedure is given in [8]; this approach does not seem to have 
been widely applied in astrophysics as yet. 

(iii) LTE atmospheres by Rybicki algorithm. Another way of computing LTE 
model atmospheres economically is to use the Rybicki algorithm. Because it is 
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assumed that material properties depend only on N and T, the linearized transport 
equation at each frequency can be written 

T,6Jk + U,6N + V,6T = K,, (2.56) 

where SJ,, 6N, and 6T represent the depth variations of each of the indicated quan- 
tities and T,, U,, and V, are all tridiagonal. These systems can be solved (vectorizing 
over multiple right-hand sides) for expressions of the form 

SJ, = QkGN + R,ST + S,, (k = l,..., K). (2.57) 

Equations (2.57) are substituted into the linearized constraints of hydrostatic and 
radiative equilibrium, which are of the forms 

5 W,@,+A6N+BST=Y 
k=l 

and 

t x,ti,$ctiN+D6T=z, 
k=l 

to develop a final full system 

(2.58) 

(2.59) 

(2.60) 

which yields SN and ST. 
After revising the temperature-density structure of the medium, one performs a 

formal solution for all angles and frequencies to update Eddington factors. These are 
used in the updated Eqs. (2.56), and the whole process is iterated to convergence. The 
total computing effort scales as I(cD2N + ~‘(20)~], which is favorable in that it 
scales linearly with N. Thus the Rybicki method is to be preferred for LTE models 
having complicated frequency spectra. On the other hand, in imposing two 
constraints instead of one we are penalized by an eightfold increase in the effort 
needed to solve the final system (2.60). 

In many applications this penalty can be evaded [ 171. Notice that the hydrostatic 
equation is coupled to the radiation field through the radiation pressure gradient (or 
radiation force) term. When these terms are negligible compared to g (low- 
temperature media), the gas pressure p is simply a linear function of m and can be 
fixed once and for all. Even in high temperature media a good estimate of the 
radiation force is given by the diffusion theory result 

Wdm= (xRl~W/4fi2)= (XRIPC)~~~ (2.6 1) 
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where Tea is the so-called effective temperature associated with the (constant) radiant 
flux or luminosity imposed at the lower boundary. These facts suggest that we rewrite 
Eqs. (2.56~(2.60) in terms of 6T and Sp, and then merely drop terms in 6p, solving 
only a (D X D) system for 6T. The small changes in pressure structure produced by 
improved estimates of the radiation forces are then accounted for by an iterative 
update after the formal solution is performed to update Eddington factors. 

(iv) Non-LTE atmosphere by the Feautrier algorithm. In astrophysical media 
densities are often low while radiation fields are large, particularly in the observable 
boundary layers of the objects under study. Here the ad hoc assumption of LTE 
breaks down and we must determine occupation numbers directly from steady state 
rate equations of the general form 

-ni x (~ij + C,) + JTi nj(Rji + Cji> = 0 (2.62) 
i*i 

in which the R’s and C’s denote radiative and collisonal rates, respectively, (see, e.g., 
Chaps. 5 of [31]). We then have a strongly interlocked system in which complex (and 
sometimes subtle) physical interactions occur (see, e.g., Chaps. 7, 11, and 12 of [31]), 
and therefore have little recourse but to account for all couplings in the most direct 
way possible. 

Thus far the most successful approach [5, 7, 30, 341 has been to adjoin a set of L 
rate equations (one for each bound level plus one for total number conservation) and 
a charge conservation equation to the transport, radiative equilibrium, and 
hydrostatic equilibrium equations, obtaining finally a system that determines the 
solution vectors, 

%+I/2 = (Jd+,12,,,...,Jd+l12,K, Td+ll2y Ndfl12, n1,d+1/29--1 nL,dtl/29 %d+ l/2) (2e63) 

for d = l,..., D. As in the LTE case, the linearized system is of the form of Eq. (2.54); 
the computational effort scales as cD(N + L + 3)3, which, for realistic problems, 
becomes costly. 

The direct Rybicki algorithm is unsuited to this problem because we wish to 
determine several variables at each depth point (a minimum set would be T and all 
level populations) so the final system to be solved becomes very large. Nevertheless 
efficient iterative solutions of the system may be feasible, using astute preconditioning 
techniques such as those being developed by Scharmer and his colleagues [47,48]; 
this is a question for future research. 

To obtain a non-LTE model with line transitions it has been customary to 
construct a sequence of models: first in LTE (which gives the asymptotic solution at 
great depth); next for non-LTE continua only (which accounts for departures from 
LTE in the most transparent transitions, hence deepest layers); finally with non-LTE 
in the full transition array. Details are discussed in [35]. Little is known about the 
necessity and/or efficacy of this cautious ritual. 

Very little effort has been devoted to finding cheaper methods. Anderson [l] has 

581/51/1-2 
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suggested a very promising approach which uses heuristic arguments to prescribe 
groupings of large numbers of individual frequencies into coarse bins which are 
treated internally by a kind of multifrequency/grey method. To the author’s 
knowledge no attempts have been made to find numerical splittings of the equations 
like those described in [8]; such an effort might possibly prove rewarding, though 
past experience is not encouraging. 

III. SPHERICAL GEOMETRY 

Many astrophysical media can be considered spherical (e.g., stars) or spherical 
shells (e.g., planetary nebulae). 

A. The Transfer Equation 

In a static spherical medium the transfer equation is 

P(qt”lW + r-v - P’)(qJ”l&) = X”(S, - I,“>. (3.1) 

Taking symmetric and antisymmetric averages for 5~1 (and making the same 
assumption about the isotropy of material properties as in Sect. II) we find 

@h,,lW + r-‘(l -$Wh,,/&) = x,(S, -j,,) (3.2) 

and 

,W,,.lW + r-‘(l -lu’>@p,134 = -x,h,,, (3.3) 

which can be rewritten in a more conservative form as 

and 

2 Jw a* (3P2 - 1) 
’ A+-+ r jpo + +$ b(l -p’)j,,l = -X,iuh,.. 

(3.4) 

(3.5) 

B. Formal Solution 

Suppose we are to calculate the angle-frequency dependent radiation field for a 
given run of S,(r). Discretize the medium with a set of spherical shells (rd} 
(d= l,..., D + 1) with rl = rC, an inner core radius, and ro+i = R the total radius of 
the medium; see Fig. 2. Locate jWv at cell centers rd+ r,* and h,, on the radial shells; 
one can define rd+1,2 as, for example, containing half the volume between rd and 
r d+I, 

3 
rd+ l/2 = f(d + Ii+ 1)’ (3.6) 
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FIGURE 2 

We may then proceed in one of two ways: 

(i) Tangent rays. The differential operator ~(a/&) + r-*(1 -~*)(a/&) is iden- 
tically equal to (a/&), where s measures pathlength along a ray trajectory. A 
particularly useful choice is a set of parallel rays tangent to the spherical shells 
Pd+1/2 } through the cell centers. Each ray is then specified by its impact parameterp, 
the distance from the center along a symmetry axis perpendicular to the ray bundle; 
positions on a ray are specified by s, the pathlength from the symmetry axis (see 
Fig. 2). 

Let Z& denote the intensity traveling along fs. Equation (3.1) is then 

f @Z&/as> =x(6 v) [W, v) - Z,‘ul, (3.7) 

where r = r(s, p) = (s2 +p ) ’ “’ Introducing Feautrier variables along this ray, we . 
can rewrite Eq. (3.7) as 

and 

(%“/a~,“> =j,, - S,” (3.8) 

which combine the yield 

where dr,, = -x, ds and we suppressed mention top (which is fixed). Equation (3.10) 
along with boundary conditions obtained from Eqs. (3.8) and (3.9) can be discretized 
as a tridiagonal system along the ray, and solved as in Eq. (2.38). As was true in 



18 DIMITRI MIHALAS 

planar geometry, one may use second-order accurate finite differences, spline 
colocation, or a Hermite scheme. Details are discussed in [ 18, 381 and Chap. 7 of 
1311. 

To obtain the run of j,” on the full range of ,U one must supplement the tangent 
rays through cell centers by additional rays that sample the core (p <p, = rc). By 
symmetry one need solve only to the right of the vertical axis in Fig. 2. If D shells are 
sampled completely, the total computing effort scales as cD*N (D is assumed to be 
much larger than the number of core rays). Because each ray contains a different 
number of nodes, the algorithm does not vectorize over p, but can be vectorized over 
frequency on each ray. 

An advantage of the tangent ray method is that it can handle the sharp forward 
peaking of the radiation field that occurs in the outer regions of very extended 
transparent media [ 191. 

(ii) Discrete angle-differencing. A significant drawback of the tangent-ray 
method is that it can never be made exactly consistent with the moment equations 
discussed in Section 111~. For example, simple geometry shows that if the flux-like 
quantity h,, is to be located at {rd}, it will be miscentered with respect toj,,, located 
on a set of ray-induced nodes {s d+ l,2(p)}, by different amounts for each shell on a 
given ray and by different amounts for each ray intersecting a specified shell. Nor are 
the equations in any sense conservative; there is no way they can be summed to yield 
the moments directly. These difficulties can be overcome by differencing Eqs. (3.4) 
and (3.5) directly in radius and angle to develop a discrete-space method similar to 
Carlson’s S,-method for neutron transport [ 11, 26, 271. 

Thus choose a set of discrete ordinates (,u,}, m = l,..., M, and let j, and h, 
represent j@) and h(u) within an angular cell (u,-i12,~,+ i,J. Clearly pl12 zz 0 and 
,u~+ ,,2 = 1; the remaining cell boundaries will be prescribed shortly. Then integrating 
Eqs. (3.4) and (3.5) over an angle cell we obtain 

~~(r’h,)+~((1-~~+lll)h,+,i2-(l-~~-1/2)hm-lj2l=x~n(~--j,) 
(3.11) 

and 

-~,-~,~(l -iL,21jm-1~21 = -xbhA~ 
(3.12) 

where for brevity we omit reference to frequency. Noting that h,,, = h(p = 0) = 0 by 
symmetry, we instantly see that Eqs. (3.11) and (3.12) will sum exactly to discrete 
representations of the moment equations (3.25) and (3.26). 

An important limit that must be guaranteed by Eqs. (3.11) and (3.12) is that in an 
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infinite homogeneous medium j 3 S and h 3 0. Equation (3.11) admits this limit 
automatically, but Eq. (3.12) does only if one chooses cell boundaries such that 

Clm+vtu -Pit+,,* 1 -A-,,*(1 -CL,*) = L(3& - 1). (3.13) 

Equation (3.13) defines the {cc,+ ,,*} recursively; note that it can be satisfied with 
even a one angle-point quadrature if we choose ,u, = l/g. 

To evaluate j,,,+i,2 and hm+,,2 we must choose a representation for j@) and h(u). A 
good choice on the basis of stability considerations is a linear spline [44], i.e., 

At 1l2 = [01,, 1 -&+1,2)An + Olmt1/2-Pml~mtlllCUmtl -i4tJ, (3.14) 

and similarly for h,, ,,*. The discrete system (3.11) and (3.12) is then tridiagonal in 
angle. If similar equations are formulated for I,’ instead of j,,” and h,,, the fact that 
a photon trajectory always has a larger value of p at the point of destruction than the 
point of creation argues for upstream differencing in angle [29], which permits a 
sequential solution at successive angles. The argument does not apply, however, to j,,” 
and h,, which mix information from f,.~; hence we have no choice but to solve for all 
angle components simultaneously. 

Spatially discretized versions of Eqs. (3.11) and (3.12) with suitable boundary 
conditions produce a system of the form 

-Ad&+ ,I2 + Bdhd - CdL1,2 = Dd, (d= I)...) II). (3.15) 

and 

-Ed+whdt~ . 
+ Fdt l,IJd+ l/z -Gd+mh,=H,,+m, (u’= l,..., 0). (3.16) 

Here j,, ,,* and h, are vectors of length M containing the angular variation ofj,” and 
h,, at specified depth points, and A, B, C, E, F, and G are (M x M) tridiagonal 
matrices. The boundary conditions imply A,, , = 0 and C, = 0. The system is solved 
by forward elimination, generating 

KY= Pt+Wdt,,2)-1Cd~ (3.17) 

L, =‘P, - 4X,+ 1/J-’ (Dd + At,%+ ,,A (3.18) 

M d-1/2=(Fd-1,*-Ed-1,2Kd)-‘Gd-*/2 (3.19) 

Y-1/2 = (Fd-1/2 -E,-,,,K&l P-4,-,/2 +L,,2Ld) (3.20) 

followed by the back-substitution 

hd = Kdjd- 1l2 + Ld (3.21) 

and 

jdt I/2 = Mjt 1,2hd + Ndt l/2 (3.22) 



20 DIMITRI MIHALAS 

for d = l,..., D. The computational effort scales as cDM3N, which is advantageous 
when D is large and M is small, as might be true for a problem with a geometrically 
thin transport region (e.g., a stellar atmosphere), in which forward peaking of the 
radiation is not severe, surrounding a large diffusion region (e.g., a star), in which 
sphericity effects are important (because I, < R) but the radiation is almost isotropic. 
However, in very extended transparent media, the angle mesh must be specially 
tailored to handle forward peaking, or the number of meshpoints becomes 
prohibitively large. The ray method may then be preferable. 

C. Scattering Problems 

Scattering problems are more complex in spherical geometry than in planar 
geometry because the angle cosine ,u between the direction of photon propagation and 
local outward normal varies along the ray path. 

(i) Rybicki algorithm. If the scattering term contains only a single frequency- 
independent integral such as J= J” #,J, dv we can solve the problem using a variant 
of the Rybicki algorithm [38] on tangent rays. Along each ray we have a tridiagonal 
system of the form 

%A, = hf + h (I = l,..., L); n = l,..., N), (3.23) 

where J and jln contain, respectively, the radial variation of Jand j[r(s, p,), v] on the 
nodes generated by the intersections of the ray specified by pI with the radial shells. 
This ray contains L nodes ranging from r = rI+ i = R to r = p,. Equation (3.23) is 

. . solved to yield ~~~ = C,,J + D,,. We use these expressions for all (1, n) in the 
definition of 1, namely 

L+1,2=C ’ w/nJd+ ~/z,ln, (3.24) 
1.n 

to develop a final system of the form A J= B, which yields J, hence S,. Details of 
how quadrature weights are generated and how the matrices mesh together are 
discussed in [38]. The total computing effort scales as cD3N, which is favorable for 
large N, but inefficient for coherent scattering (N = l), compared to solutions using 
the moment equations. 

(ii) The moment equations. To reduce the dimensionality of the problem 
(critical for constructing model atmospheres), we integrate Eqs. (3.4) and (3.5) over 
angle to obtain the moment equations 

1 a(r’H,) 
7- & = X,(S” - J”) 

and 
@.f”J”) + WIJ - 1>5, = -x 

2 
ff 

r ” UT (3.26) 
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wheref, is the variable Eddington factor. The additional term on the left-hand side of 
Eq. (3.26) precludes obtaining a simple second-order equation by substituting for H, 
in Eq. (3.25). But as pointed out by Auer [3] one can define a sphericityfactor q, by 

which is known iff, is given. We can then rewrite Eq. (3.26) as 

(3.27) 

where dr, z -x, dr, and thus obtain from Eq. (3.25) the combined moment equation 

1 a 

[ 
r2 Wh+L) -- - 

4” ar, 4, 8% I 
= f (J” - S”). 

” 
(3.29) 

Defining the new independent variable d/Y, = (4,/r’) dt, we can rewrite Eq. (3.29) as 

~‘ml”JJ 
ax; = q, ( 1 

2 (.I” - S”). (3.30) 

Boundary conditions follow from Eqs. (3.25), (3.26), and (3.28); see (381 and 
Chap. 7 in [31]. 

(iii) Feautrier algorithm. On a discrete radius mesh Eqs. (3.30) and its 
boundary conditions produce a block tridiagonal system as in Eq. (2.30). Given 
values off, and q, we solve it by the same algorithm to obtain J,(r) at all radii and 
frequencies with a computational effort scaling as cDN3, where N is the number of 
frequency points needed to represent the scattering kernel in 

s, = a” 
I 

I?+‘, v)J,, dv’ t P,. (3.3 1) 

Clearly this scaling is most favorable for problems with large D and small N (e.g., 
coherent scattering, N = 1). 

As in the planar problem, a solution of Eq. (3.30), which yields correct global ther- 
malization, is followed by a formal solution to determine the angular variation ofj,,, 
hence improved Eddington and sphericity factors f, and q,. One iterates between the 
moment equations and formal solution until convergence is obtained; for I iterations 
the total computational effort scales as I(cDN3 t c’D’N) or I(cDN3 t c’DM3N) for 
the tangent ray and discrete space formal solutions, respectively. 

A difficulty with the procedure just outlined is that it is not possible to obtain strict 
consistency between the combined moment equations and the formal solution even 
though tight convergence is obtained. The problems are: (1) There is no way of 
calculating q, from a discrete set of f,‘s in such a way as to guarantee the discrete 
versions of Eqs. (3.26) and (3.28) are exactly consistent. The possibility of 
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consistency is further eroded when we introduce the new variable X, and base a 
difference scheme on Eq. (3.30). (2) The tangent rays produce a coordinate system 
which is obviously not orthogonal to 1. Therefore summation over tangent rays to 
effect an angle integration cannot commute with spatial differencing in r. In contrast, 
if one uses Eqs. (3.11) and (3.12) for the formal solution and Eqs. (3.25) and (3.26) 
for the moment solution, exact consistency is achievable. 

D. The Model Atmospheres Problem 

When Eq. (3.30) is coupled to constraints of radiative equilibrium, hydrostatic 
equilibrium (generalized to spherical geometry), and either LTE or non-LTE material 
equations, the resulting discrete system has precisely the same mathematical structure 
as the planar model atmospheres problem and can be solved by the same algorithms. 
Details and typical applications appear in [ 12, 25, 37, 381. 

IV. TIME-DEPENDENT TRANSPORT IN PLANAR MEDIA 

For some applications it is of interest to consider time-dependent propagation of 
radiation in a static medium (assumed planar here). The transport equation is 

c 1 aG 
c at fp az = X”(S” - I,)* 

Taking symmetric and antisymmetric averages of Eq. (4.1) we get 

and 

lah aj,,- -x+ - - -x&v. c at 8~ (4.3) 

(4.1) 

These equations limit to the wave equation in transparent media, the time-dependent 
diffusion equation in opaque media, and have the correct flux-limiting properties [39, 
40, 411. 

We may discretize Eqs. (4.2) and (4.3) on a staggered spatial mesh such as in 
Fig. 1. To handle the time derivatives several options are open: the method of lines 
[8], finite differences, or partial analytical integration 1411. For simplicity choose 
finite differences. Experience shows that the dispersiveness of time-centered schemes 
(e.g., Crank-Nicholson) produces unacceptable oscillations behind steep fronts, hence 
one opts for a diffusive scheme such as backward Euler (fully implicit) [23, 391. We 
then have 

Aah,./az) = ks, + tiJ - (x, f y)j,, (4.4) 
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and 

Pu(~j,“/W = YK” - 01” + Y) h,” 7 (4.5) 

where y f l/cd&j;” and hi” refer to values at the old time-level, and all other quan- 
tities are at the advanced time level. We see that the time variation of the solution 
manifests itself as effective source-sink terms. 

Equations (4.4) and (4.5) can be manipulated into a second-order form reminiscent 
of Eq. (2.6) either analytically before discretization 1391 or after discretization (as 
done for the moment equations in [ 161); the relative merits of these approaches are 
unknown, but the latter is easier to derive and code. Boundary conditions follow 
directly from Eqs. (4.2) and (4.3) and specification of imposed intensities (if any). 

For problems where either the source function contains a frequency-independent 
scattering integral (e.g., coherent scattering or complete redistribution in lines) or 
responds to a single integral constraint (e.g., LIT of the material is expressed in terms 
of a net absorption-emission integral), we can use a Rybicki-like algorithm to solve 
either the coupled first-order equations (4.4) and (4.5) or their second-order coun- 
terpart. In either case the system has the form 

T,X, = U,s+ V,, (4.6) 

where k specifies a choice (uk, v,J, J is the depth variation of the effective scattering 
integral, V, contains sources (thermal and terms from old time level), and T, is 
tridiagonal. For the coupled first-order systems X, contains an interleaving of j, and 
h,; for the second-order system only j, is needed. As before, Eq. (4.6) is solved for 
X, = A,J + B,, and this expression is summed into the discrete representation of 3 to 
develop a final system for J. Solving for 3 we can evaluate S,, hence construct j,, 
from systems of the form of Eq. (2.28). The total computing effort scales as 
cD2K + c’D3. 

If the scattering integral is explicitly frequency dependent, or we wish to satisfy 
several constraints (e.g., energy balance plus non-LTE rate equations), a Feautrier 
scheme based on moment equations is more appealing. One integrates Eqs. (4.2) and 
(4.3) over angle and introduces Eddington factors. One solves these equations for J,, 
hence can evaluate S,, and then updates the Eddington factors from a formal 
solution, iterating the whole process to convergence. While approach has, in fact, 
worked in some dynamical calculations on&Z-flow timescales (so the radiation is 
essentially quasi-static), its efficacy in general is unknown. In particular for the 
propagation of steep radiation fronts on radiation-flow timescales there may be 
unsatisfactory feedback between the two steps of the iteration. Indeed computing 
radiation-front propagation accurately remains troublesome. One wants better 
resolution than given by the diffusive backward Euler scheme, while avoiding 
spurious ringing. Perhaps techniques developed in other contexts-flux-corrected 
transport (FCT), monotonized advection, adaptive meshes-could be helpful here. 
Little work has yet been done, and this area is ripe for systematic study. 
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